Inhibition of pokeweed antiviral protein (PAP) by turnip mosaic virus genome-linked protein (VPg).

نویسندگان

  • Artem V Domashevskiy
  • Hiroshi Miyoshi
  • Dixie J Goss
چکیده

Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pokeweed Antiviral Protein, a Ribosome Inactivating Protein: Activity, Inhibition and Prospects

Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis ...

متن کامل

Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta.

The viral protein linked to the genome (VPg) of Turnip mosaic virus (TuMV) interacts in vitro with the translation eukaryotic initiation factor (eIF) 4E. In the present study, we investigated the consequence of TuMV infection on eIF4E expression. Two isomers are present in plants, namely eIF4E and eIF(iso)4E. Expression of the latter was detected in both TuMV-infected and mock-inoculated Brassi...

متن کامل

A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg.

We have identified a cellular factor that interacts with the virus genome-linked proteins (VPgs) of a diverse range of potyviruses. The factor, called Potyvirus VPg-interacting protein (PVIP), is a plant-specific protein with homologues in all the species examined, i.e., pea, Arabidopsis thaliana, and Nicotiana benthamiana. The sequence of PVIP does not identify a specific function, although th...

متن کامل

Pokeweed antiviral protein inhibits brome mosaic virus replication in plant cells.

Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein isolated from the pokeweed plant (Phytolacca americana) that inhibits the proliferation of several plant and animal viruses. We have shown previously that PAP and nontoxic mutants of PAP can directly depurinate brome mosaic virus (BMV) RNA in vitro, resulting in reduced viral protein translation. Here we expand on these initial...

متن کامل

The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection.

Poly(A) binding protein 2 (PABP2) of Arabidopsis thaliana was previously shown to interact with VPg-Pro of turnip mosaic virus (TuMV) and may consequently play an important role during infection. Subcellular fractionation experiments revealed that PABP2 was predominantly a cytoplasmic soluble protein in healthy plants. However, in TuMV-infected plants, a subpopulation of PABP2 was membrane asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 35  شماره 

صفحات  -

تاریخ انتشار 2012